Minimization principle in ordered Banach spaces and application via Ekeland's variational principle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$(varphi_1, varphi_2)$-variational principle

In this paper we prove that if $X $ is a Banach space, then for every lower semi-continuous bounded below function $f, $ there exists a $left(varphi_1, varphi_2right)$-convex function $g, $ with arbitrarily small norm,  such that $f + g $ attains its strong minimum on $X. $ This result extends some of the  well-known varitional principles as that of Ekeland [On the variational principle,  J. Ma...

متن کامل

A variational principle and its application

Assume that A is a bounded selfadjoint operator in a Hilbert space H. Then, the variational principle max v |(Au, v)| (Av, v) = (Au, u) (*) holds if and only if A ≥ 0, that is, if (Av, v) ≥ 0 for all v ∈ H. We define the left-hand side in (*) to be zero if (Av, v) = 0. As an application of this principle it is proved that C = max v∈L2(S) | ∫ S vdt| ∫ S ∫ S v(t)v(s)dsdt 4π|s−t| , (**) where L(S)...

متن کامل

Variational Principle

Variational principle for probabilistic learning Yet another justification More simplification of updates for mean-field family Examples Dirichlet Process Mixture On minimization of divergence measures Energy minimization justifications Variational learning with exponential family Mean parametrization and marginal polytopes Convex dualities The log-partition function and conjugate duality Belie...

متن کامل

A variational principle in reflexive spaces with Kadec-Klee norm

We prove a variational principle in reflexive Banach spaces X with KadecKlee norm, which asserts that any Lipschitz (or any proper lower semicontinuous bounded from below extended real-valued) function in X can be perturbed with a parabola in such a way that the perturbed function attains its infimum (even more can be said — the infimum is well-posed). In addition, we have genericity of the poi...

متن کامل

A SUBSEQUENCE PRINCIPLE CHARACTERIZING BANACH SPACES CONTAINING c0

The notion of a strongly summing sequence is introduced. Such a sequence is weak-Cauchy, a basis for its closed linear span, and has the crucial property that the dual of this span is not weakly sequentially complete. The main result is: Theorem. Every non-trivial weak-Cauchy sequence in a (real or complex) Banach space has either a strongly summing sequence or a convex block basis equivalent t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Differential Equations & Applications

سال: 2017

ISSN: 1847-120X

DOI: 10.7153/dea-09-08